Quadratic Integral Equations in Reflexive Banach Space
نویسنده
چکیده
This paper is devoted to proving the existence of weak solutions to some quadratic integral equations of fractional type in a reflexive Banach space relative to the weak topology. A special case will be considered.
منابع مشابه
Volterra-stieltjes Integral Equation in Reflexive Banach Spaces
Volterra-Stieltjes integral equations have been studied in the space of continuous functions in many papers for example, (see [3]-[7]). Our aim here is to studing the existence of weak solutions to a nonlinear integral equation of Volterra-Stieltjes type in a reflexive Banach space. A special case will be considered.
متن کاملSome generalizations of Darbo's theorem for solving a systems of functional-integral equations via measure of noncompactness
In this paper, using the concept of measure of noncompactness, which is a very useful and powerful tools in nonlinear functional analysis, metric fixed point theory and integral equations, we introduce a new contraction on a Banach space. For this purpose by using of a measure of noncompactness on a finite product space, we obtain some generalizations of Darbo’s fixed-point theorem. Then, with ...
متن کاملQuadratic $alpha$-functional equations
In this paper, we solve the quadratic $alpha$-functional equations $2f(x) + 2f(y) = f(x + y) + alpha^{-2}f(alpha(x-y)); (0.1)$ where $alpha$ is a fixed non-Archimedean number with $alpha^{-2}neq 3$. Using the fixed point method and the direct method, we prove the Hyers-Ulam stability of the quadratic $alpha$-functional equation (0.1) in non-Archimedean Banach spaces.
متن کاملSolving infinite system of nonlinear integral equations by using F-generalized Meir-Keeler condensing operators, measure of noncompactness and modified homotopy perturbation.
In this article to prove existence of solution of infinite system of nonlinear integral equations, we consider the space of solution containing all convergence sequences with a finite limit, as with a suitable norm is a Banach space. By creating a generalization of Meir-Keeler condensing operators which is named as F-generalized Meir-Keeler condensing operators and measure of noncompactness, we...
متن کاملA Weak Stochastic Integral in Banach Space with Application to a Linear Stochastic Differential Equation*
Cylindrical Wiener processes in real separable Banach spaces are defined, and an approximation theorem involving scalar Wiener processes is given for such processes. A weak stochastic integral for Banach spaces involving a cylindrical Wiener process as integrator and an operator-valued stochastic process as integrand is defined. Basic properties of this integral are stated and proved. A class o...
متن کامل